Google Cloud Certified Professional Machine Learning Language

Section 1: Architecting low-code ML solutions

1.1 Developing ML models by using BigQuery ML. Considerations include:

e Building the appropriate BigQuery ML model (e.g., linear and binary classification,
regression, time-series, matrix factorization, boosted trees, autoencoders) based on the
business problem

e Feature engineering or selection by using BigQuery ML

e Generating predictions by using BigQuery ML

1.2 Building Al solutions by using ML APIs. Considerations include:

e Building applications by using ML APIs (e.g., Cloud Vision API, Natural Language
AP], Cloud Speech API, Translation)

e Building applications by using industry-specific APIs (e.g.,, Document Al API, Retail
API)

1.3 Training models by using AutoML. Considerations include:

e Preparing data for AutoML (e.g., feature selection, data labeling, Tabular Workflows
on AutoML)

e Using available data (e.g., tabular, text, speech, images, videos) to train custom
models

e Using AutoML for tabular data

e Creating forecasting models using AutoML

e Configuring and debugging trained models

Section 2: Collaborating within and across teams to manage data and models

2.1 Exploring and pre-processing organization-wide data (e.g., Cloud Storage,
BigQuery, Spanner, Cloud SQL, Apache Spark, Apache Hadoop). Considerations
include:

e Organizing different types of data (e.g., tabular, text, speech, images, videos) for
efficient training

e Managing datasets in Vertex Al

e Data pre-processing (e.g., Dataflow, Tensor Flow Extended [TFX], BigQuery)

e Creating and consolidating features in Vertex Al Feature Store

e Privacy implications of data usage and/or collection (e.g., handling sensitive data
such as personally identifiable information [PII] and protected health information
[PHI])



2.2 Model prototyping using Jupyter notebooks. Considerations include:

e Choosing the appropriate Jupyter backend on Google Cloud (e.g., Vertex Al
Workbench, notebooks on Dataproc)

e Applying security best practices in Vertex Al Workbench

e Using Spark kernels

e [ntegration with code source repositories

e Developing models in Vertex Al Workbench by using common frameworks (e.g.,
TensorFlow, PyTorch, sklearn, Spark, JAX)

2.3 Tracking and running ML experiments. Considerations include:

e Choosing the appropriate Google Cloud environment for development and
experimentation (e.g., Vertex Al Experiments, Kube flow Pipelines, Vertex Al Tensor
Board with TensorFlow and PyTorch) given the framework

Section 3: Scaling prototypes into ML models (~18% of the exam)
3.1 Building models. Considerations include:

e Choosing ML framework and model architecture
e Modeling techniques given interpretability requirements

3.2 Training models. Considerations include:

e Organizing training data (e.g., tabular, text, speech, images, videos) on Google Cloud
(e.g., Cloud Storage, BigQuery)

e Ingestion of various file types (e.g., CSV, JSON, images, Hadoop, databases) into
training

e Training using different SDKs (e.g., Vertex Al custom training, Kubeflow on Google
Kubernetes Engine, AutoML, tabular workflows)

e Using distributed training to organize reliable pipelines

e Hyper parameter tuning

e Troubleshooting ML model training failures

3.3 Choosing appropriate hardware for training. Considerations include:

e Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge devices)
e Distributed training with TPUs and GPUs (e.g., Reduction Server on Vertex Al,
Horovod)

Section 4: Serving and scaling models
4.1 Serving models. Considerations include:

e Batch and online inference (e.g., Vertex Al, Dataflow, BigQuery ML, Dataproc)
e Using different frameworks (e.g., PyTorch, XGBoost) to serve models

e Organizing a model registry

e A/B testing different versions of a model



4.2 Scaling online model serving. Considerations include:

e Vertex Al Feature Store

e Vertex Al public and private endpoints

e Choosing appropriate hardware (e.g., CPU, GPU, TPU, edge)

e Scaling the serving backend based on the throughput (e.g., Vertex Al Prediction,
containerized serving)

e Tuning ML models for training and serving in production (e.g., simplification
techniques, optimizing the ML solution for increased performance, latency, memory,
throughput)

Section 5: Automating and orchestrating ML pipelines
5.1 Developing end-to-end ML pipelines. Considerations include:

e Data and model validation

e Ensuring consistent data pre-processing between training and serving

e Hosting third-party pipelines on Google Cloud (e.g., MLFlow)

e Identifying components, parameters, triggers, and compute needs (e.g., Cloud Build,
Cloud Run)

e Orchestration framework (e.g., Kubeflow Pipelines, Vertex Al Pipelines, Cloud
Composer)

e Hybrid or multicloud strategies

e System design with TFX components or Kubeflow DSL (e.g., Dataflow)

5.2 Automating model retraining. Considerations include:

e Determining an appropriate retraining policy
e Continuous integration and continuous delivery (CI/CD) model deployment (e.g.,
Cloud Build, Jenkins)

5.3 Tracking and auditing metadata. Considerations include:

e Tracking and comparing model artifacts and versions (e.g., Vertex Al Experiments,
Vertex ML Metadata)

e Hooking into model and dataset versioning

e Model and data lineage

Section 6: Monitoring ML solutions
6.1 Identifying risks to ML solutions. Considerations include:

e Building secure ML systems (e.g., protecting against unintentional exploitation of
data or models, hacking)

e Aligning with Google's Responsible Al practices (e.g., biases)

e Assessing ML solution readiness (e.g., data bias, fairness)

e Model explain ability on Vertex Al (e.g., Vertex Al Prediction)

6.2 Monitoring, testing, and troubleshooting ML solutions. Considerations
include:



e Establishing continuous evaluation metrics (e.g., Vertex Al Model Monitoring,
Explainable AI)

e Monitoring for training-serving skew

e Monitoring for feature attribution drift

e Monitoring model performance against baselines, simpler models, and across the
time dimension

e Common training and serving errors



	Section 1: Architecting low-code ML solutions
	Section 2: Collaborating within and across teams to manage data and models
	Section 3: Scaling prototypes into ML models (~18% of the exam)
	Section 4: Serving and scaling models
	Section 5: Automating and orchestrating ML pipelines
	Section 6: Monitoring ML solutions

