
Google Cloud Certified Professional Machine Learning Language 

 Section 1: Architecting low-code ML solutions  

 
1.1 Developing ML models by using BigQuery ML. Considerations include: 

 
    ● Building the appropriate BigQuery ML model (e.g., linear and binary classification, 
regression, time-series, matrix factorization, boosted trees, autoencoders) based on the 
business problem 
    ●  Feature engineering or selection by using BigQuery ML 
    ● Generating predictions by using BigQuery ML 
 
1.2 Building AI solutions by using ML APIs. Considerations include: 

 
    ● Building applications by using ML APIs (e.g., Cloud Vision API, Natural Language 
API, Cloud Speech API, Translation) 
    ● Building applications by using industry-specific APIs (e.g., Document AI API, Retail 
API) 
 
1.3 Training models by using AutoML. Considerations include: 

 
    ● Preparing data for AutoML (e.g., feature selection, data labeling, Tabular Workflows 
on AutoML) 
    ● Using available data (e.g., tabular, text, speech, images, videos) to train custom 
models 
    ● Using AutoML for tabular data 
    ● Creating forecasting models using AutoML 
    ● Configuring and debugging trained models 
 
Section 2: Collaborating within and across teams to manage data and models  
 
2.1 Exploring and pre-processing organization-wide data (e.g., Cloud Storage, 
BigQuery, Spanner, Cloud SQL, Apache Spark, Apache Hadoop). Considerations 
include: 
 
    ● Organizing different types of data (e.g., tabular, text, speech, images, videos) for 
efficient training 
    ● Managing datasets in Vertex AI 
    ● Data pre-processing (e.g., Dataflow, Tensor Flow Extended [TFX], BigQuery) 
    ● Creating and consolidating features in Vertex AI Feature Store 
    ● Privacy implications of data usage and/or collection (e.g., handling sensitive data 
such as personally identifiable information [PII] and protected health information 
[PHI]) 
 
 
 
 
 
 



 
2.2 Model prototyping using Jupyter notebooks. Considerations include: 
 
    ● Choosing the appropriate Jupyter backend on Google Cloud (e.g., Vertex AI 
Workbench, notebooks on Dataproc) 
    ● Applying security best practices in Vertex AI Workbench 
    ● Using Spark kernels 
    ● Integration with code source repositories 
    ● Developing models in Vertex AI Workbench by using common frameworks (e.g., 
TensorFlow, PyTorch, sklearn, Spark, JAX) 
 
2.3 Tracking and running ML experiments. Considerations include: 
 
    ● Choosing the appropriate Google Cloud environment for development and 
experimentation (e.g., Vertex AI Experiments, Kube flow Pipelines, Vertex AI Tensor 
Board with TensorFlow and PyTorch) given the framework 
 
Section 3: Scaling prototypes into ML models (~18% of the exam) 
3.1 Building models. Considerations include: 
 
    ●  Choosing ML framework and model architecture 
    ● Modeling techniques given interpretability requirements 
 
3.2 Training models. Considerations include: 
 
    ● Organizing training data (e.g., tabular, text, speech, images, videos) on Google Cloud 
(e.g., Cloud Storage, BigQuery) 
    ●  Ingestion of various file types (e.g., CSV, JSON, images, Hadoop, databases) into 
training 
    ● Training using different SDKs (e.g., Vertex AI custom training, Kubeflow on Google 
Kubernetes Engine, AutoML, tabular workflows) 
    ●  Using distributed training to organize reliable pipelines 
    ● Hyper parameter tuning 
    ● Troubleshooting ML model training failures 
 
3.3 Choosing appropriate hardware for training. Considerations include: 
 
    ● Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge devices) 
    ● Distributed training with TPUs and GPUs (e.g., Reduction Server on Vertex AI, 
Horovod) 
 
Section 4: Serving and scaling models  
4.1 Serving models. Considerations include: 
 
    ● Batch and online inference (e.g., Vertex AI, Dataflow, BigQuery ML, Dataproc) 
    ● Using different frameworks (e.g., PyTorch, XGBoost) to serve models 
    ● Organizing a model registry 
    ● A/B testing different versions of a model 
 



4.2 Scaling online model serving. Considerations include: 
 
    ● Vertex AI Feature Store 
    ● Vertex AI public and private endpoints 
    ● Choosing appropriate hardware (e.g., CPU, GPU, TPU, edge) 
    ● Scaling the serving backend based on the throughput (e.g., Vertex AI Prediction, 
containerized serving) 
    ● Tuning ML models for training and serving in production (e.g., simplification 
techniques, optimizing the ML solution for increased performance, latency, memory, 
throughput) 
 
Section 5: Automating and orchestrating ML pipelines  
 
5.1 Developing end-to-end ML pipelines. Considerations include: 
 
    ● Data and model validation 
    ● Ensuring consistent data pre-processing between training and serving 
    ● Hosting third-party pipelines on Google Cloud (e.g., MLFlow) 
    ● Identifying components, parameters, triggers, and compute needs (e.g., Cloud Build, 
Cloud Run) 
    ● Orchestration framework (e.g., Kubeflow Pipelines, Vertex AI Pipelines, Cloud 
Composer) 
    ● Hybrid or multicloud strategies 
    ● System design with TFX components or Kubeflow DSL (e.g., Dataflow) 
 
5.2 Automating model retraining. Considerations include: 
 
    ● Determining an appropriate retraining policy 
    ● Continuous integration and continuous delivery (CI/CD) model deployment (e.g., 
Cloud Build, Jenkins) 
 
5.3 Tracking and auditing metadata. Considerations include:  
 
    ● Tracking and comparing model artifacts and versions (e.g., Vertex AI Experiments, 
Vertex ML Metadata) 
    ● Hooking into model and dataset versioning 
    ● Model and data lineage 
 
Section 6: Monitoring ML solutions  
6.1 Identifying risks to ML solutions. Considerations include: 
 
    ● Building secure ML systems (e.g., protecting against unintentional exploitation of 
data or models, hacking) 
    ● Aligning with Google's Responsible AI practices (e.g., biases) 
    ● Assessing ML solution readiness (e.g., data bias, fairness) 
    ● Model explain ability on Vertex AI (e.g., Vertex AI Prediction) 
 
6.2 Monitoring, testing, and troubleshooting ML solutions. Considerations 
include: 



 
    ● Establishing continuous evaluation metrics (e.g., Vertex AI Model Monitoring, 
Explainable AI) 
    ● Monitoring for training-serving skew 
    ● Monitoring for feature attribution drift 
    ● Monitoring model performance against baselines, simpler models, and across the 
time dimension 
    ● Common training and serving errors 
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