
Google Cloud Certified Professional Machine Learning Language

 Section 1: Architecting low-code ML solutions

1.1 Developing ML models by using BigQuery ML. Considerations include:

 ● Building the appropriate BigQuery ML model (e.g., linear and binary classification,
regression, time-series, matrix factorization, boosted trees, autoencoders) based on the
business problem
 ● Feature engineering or selection by using BigQuery ML
 ● Generating predictions by using BigQuery ML

1.2 Building AI solutions by using ML APIs. Considerations include:

 ● Building applications by using ML APIs (e.g., Cloud Vision API, Natural Language
API, Cloud Speech API, Translation)
 ● Building applications by using industry-specific APIs (e.g., Document AI API, Retail
API)

1.3 Training models by using AutoML. Considerations include:

 ● Preparing data for AutoML (e.g., feature selection, data labeling, Tabular Workflows
on AutoML)
 ● Using available data (e.g., tabular, text, speech, images, videos) to train custom
models
 ● Using AutoML for tabular data
 ● Creating forecasting models using AutoML
 ● Configuring and debugging trained models

Section 2: Collaborating within and across teams to manage data and models

2.1 Exploring and pre-processing organization-wide data (e.g., Cloud Storage,
BigQuery, Spanner, Cloud SQL, Apache Spark, Apache Hadoop). Considerations
include:

 ● Organizing different types of data (e.g., tabular, text, speech, images, videos) for
efficient training
 ● Managing datasets in Vertex AI
 ● Data pre-processing (e.g., Dataflow, Tensor Flow Extended [TFX], BigQuery)
 ● Creating and consolidating features in Vertex AI Feature Store
 ● Privacy implications of data usage and/or collection (e.g., handling sensitive data
such as personally identifiable information [PII] and protected health information
[PHI])

2.2 Model prototyping using Jupyter notebooks. Considerations include:

 ● Choosing the appropriate Jupyter backend on Google Cloud (e.g., Vertex AI
Workbench, notebooks on Dataproc)
 ● Applying security best practices in Vertex AI Workbench
 ● Using Spark kernels
 ● Integration with code source repositories
 ● Developing models in Vertex AI Workbench by using common frameworks (e.g.,
TensorFlow, PyTorch, sklearn, Spark, JAX)

2.3 Tracking and running ML experiments. Considerations include:

 ● Choosing the appropriate Google Cloud environment for development and
experimentation (e.g., Vertex AI Experiments, Kube flow Pipelines, Vertex AI Tensor
Board with TensorFlow and PyTorch) given the framework

Section 3: Scaling prototypes into ML models (~18% of the exam)
3.1 Building models. Considerations include:

 ● Choosing ML framework and model architecture
 ● Modeling techniques given interpretability requirements

3.2 Training models. Considerations include:

 ● Organizing training data (e.g., tabular, text, speech, images, videos) on Google Cloud
(e.g., Cloud Storage, BigQuery)
 ● Ingestion of various file types (e.g., CSV, JSON, images, Hadoop, databases) into
training
 ● Training using different SDKs (e.g., Vertex AI custom training, Kubeflow on Google
Kubernetes Engine, AutoML, tabular workflows)
 ● Using distributed training to organize reliable pipelines
 ● Hyper parameter tuning
 ● Troubleshooting ML model training failures

3.3 Choosing appropriate hardware for training. Considerations include:

 ● Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge devices)
 ● Distributed training with TPUs and GPUs (e.g., Reduction Server on Vertex AI,
Horovod)

Section 4: Serving and scaling models
4.1 Serving models. Considerations include:

 ● Batch and online inference (e.g., Vertex AI, Dataflow, BigQuery ML, Dataproc)
 ● Using different frameworks (e.g., PyTorch, XGBoost) to serve models
 ● Organizing a model registry
 ● A/B testing different versions of a model

4.2 Scaling online model serving. Considerations include:

 ● Vertex AI Feature Store
 ● Vertex AI public and private endpoints
 ● Choosing appropriate hardware (e.g., CPU, GPU, TPU, edge)
 ● Scaling the serving backend based on the throughput (e.g., Vertex AI Prediction,
containerized serving)
 ● Tuning ML models for training and serving in production (e.g., simplification
techniques, optimizing the ML solution for increased performance, latency, memory,
throughput)

Section 5: Automating and orchestrating ML pipelines

5.1 Developing end-to-end ML pipelines. Considerations include:

 ● Data and model validation
 ● Ensuring consistent data pre-processing between training and serving
 ● Hosting third-party pipelines on Google Cloud (e.g., MLFlow)
 ● Identifying components, parameters, triggers, and compute needs (e.g., Cloud Build,
Cloud Run)
 ● Orchestration framework (e.g., Kubeflow Pipelines, Vertex AI Pipelines, Cloud
Composer)
 ● Hybrid or multicloud strategies
 ● System design with TFX components or Kubeflow DSL (e.g., Dataflow)

5.2 Automating model retraining. Considerations include:

 ● Determining an appropriate retraining policy
 ● Continuous integration and continuous delivery (CI/CD) model deployment (e.g.,
Cloud Build, Jenkins)

5.3 Tracking and auditing metadata. Considerations include:

 ● Tracking and comparing model artifacts and versions (e.g., Vertex AI Experiments,
Vertex ML Metadata)
 ● Hooking into model and dataset versioning
 ● Model and data lineage

Section 6: Monitoring ML solutions
6.1 Identifying risks to ML solutions. Considerations include:

 ● Building secure ML systems (e.g., protecting against unintentional exploitation of
data or models, hacking)
 ● Aligning with Google's Responsible AI practices (e.g., biases)
 ● Assessing ML solution readiness (e.g., data bias, fairness)
 ● Model explain ability on Vertex AI (e.g., Vertex AI Prediction)

6.2 Monitoring, testing, and troubleshooting ML solutions. Considerations
include:

 ● Establishing continuous evaluation metrics (e.g., Vertex AI Model Monitoring,
Explainable AI)
 ● Monitoring for training-serving skew
 ● Monitoring for feature attribution drift
 ● Monitoring model performance against baselines, simpler models, and across the
time dimension
 ● Common training and serving errors

	Section 1: Architecting low-code ML solutions
	Section 2: Collaborating within and across teams to manage data and models
	Section 3: Scaling prototypes into ML models (~18% of the exam)
	Section 4: Serving and scaling models
	Section 5: Automating and orchestrating ML pipelines
	Section 6: Monitoring ML solutions

